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The equations of ideal ferromagnetic hydrodynamics (FMHD) in three dimensions are formulated as a hamiltonian system in 
terms of a noncanonical Poisson bracket. The conservation laws for this system are determined and used to construct Lyapunov 
functionals that are potentially useful for dealing with stability properties of FMHD equilibrium solutions. Classes of equilibrium 
solutions are identified with critical points of these Lyapunov functionals. The FMHD system is also formulated in n dimensions 
and the relations among magnetic induction, magnetic field intensity, and magnetization density are discussed from a Lie-alge- 
braic viewpoint. 

1. Introduction 

We are dealing with the nonlinear hydrodynamics of a compressible fluid that is ideally conducting and is 
a ferromagnet at the microscopic level. The relation between the magnetic induction B and magnetic field in- 
tensity H is arbitrary in 

B=H+4nM, (1) 

where M is the magnetization density. The problem under consideration for liquid ferromagnets thus differs 
from the well-known problem of the dynamics of a so-called magnetized liquid, in which the phenomenological 
relation B=,uH is introduced, with permeability p depending on magnetic field, temperature, and density in 
a prescribed fashion. 

Liquid ferromagnets have been observed experimentally and are potentially useful as ideally soft magnetic 
materials. The unperturbed equilibrium states of liquid ferromagnets are studied in refs. [ 1-3 1. 

The linear oscillations of ideally conducting ferromagnetic liquids around equilibrium are classified in ref. 
[ 41 in the incompressible limit (constant density). These oscillations are shown there to be quite unusual, 
differing both from the spin waves of a solid ferromagnet and from the magnetohydrodynamics waves (e.g., 
Alfven waves) in a conducting liquid in the presence of an external magnetic induction. 

In the present work we determine the hamiltonian structure and the resulting conservation laws for the equa- 
tions of ideal ferromagnetic hydrodynamics (FMHD) in three dimensions. We also provide the generalization 
of FMHD to n dimensions and discuss the relation ( 1) among magnetic induction, magnetic field intensity, 
and magnetization density in the n-dimensional case from a Lie-algebraic viewpoint. 

Following ref. [ 51 the FMHD equations in three dimensions are 
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div B=O , a,B= curl(vxB) , 

alp= - div(pv) , $ (M/P) =a-‘MXH > 

curl H) x B+Mx curl H+ (MaV)H , 

(20) 

(3a,b) 

(4) 

where p is the mass density, 21 is the fluid velocity, s=s(p) is the sound velocity, d/dt=d,+pV is the material 
derivative, and g is the gyromagnetic ratio (a constant). Eqs. ( 1 )- (4 ) form a complete dynamical system for 
the evolution of the fluid variables B, p, M, and v in a bounded domain subject to the following boundary 
conditions 

B*n=O, vn=O, Hxn=O, (5) 

where R is the unit vector normal to the boundary. The condition div B= 0 is preserved if it is assumed to hold 
at some initial time. 

The physical content of eqs. (2 )- (4) can be summarized as follows. According to eq. (2)) the divergenceless 
magnetic induction B is frozen into the fluid. That is, the flux of B is preserved through every surface element 
comoving with the fluid. By (3a), the mass of each comoving volume element is also preserved. However, by 
(3b), the specific magnetization M/p of a comoving fluid element precesses around the magnetic field at a 
local gyromagnetic frequency, gH. Note that we are treating M/p not as a euclidean vector, but as a set of 
euclidean scalars under rotation. The geometrical nature of M/p will become clear later, when we discuss the 
n-dimensional formulation of FMHD. Finally, the motion equation eq. (4) represents momentum balance, or 
generation of circulation of the fluid by a combination of magnetic-field and magnetization forces. 

From eqs.(2), (3) we find 

dm 
dt= 0 , m :=p - ’ ( MJ (specific magnetization) , (6) 

and 

$f=O , Q=p-‘B*Vm (potential induction) . (7) 

That is, m and Q are invariant along FMHD flow lines. (Actually, (p-‘B~v)~rn is also a flow-line invariant 
for any integer power N>, 0). Together, eqs. (6)) (7), and mass conservation eq. (3a) imply conservation of 
the global quantity 

Co= [ d3xpcD(m, 52) (8) 
J 
D 

in the domain of flow D for an arbitrary function 0, provided the velocity v is tangential to the boundary aD, 
as specified by condition (5b). The quantity d3x in (8) is the three-dimensional volume element. 

Three other global conservation laws for the FMHD system ( 1 )- (4) also exist. The first of these is the total 
energy, 

$ +pe(p)+k,B-4rdCi,’ (9) 

where P=pv is the hydrodynamic momentum density and e(p) is the specific energy, satisfying 
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=dp=s'dp 

The second global conservation law is for the magnetic helicity 

/I= d3xA*B, 
s 
D 

(11) 

where A is the vector potential, satisfying 

d,A=vxB-VcD, (12) 

where 0 is single-valued in simply connected domains. When the hydrodynamic gauge, @=pA, is chosen, the 
quantity I=p-‘A*B (specific helicity) is also a flow-line invariant, d;l/dt=O, and A can be added to the ar- 
guments of the function @ in (8), as well as p-‘B*Vl, etc. Among these quantities, however, only magnetic 
helicity ( 11) is gauge invariant. Finally, the hydrodynamic momentum for FMHD, ID d3x P, is conserved, by 

a,P, = - [P,d-H$+ (p+H*/SX)&],j (13) 

provided the total pressure (p+H*/8rr) vanishes on the boundary. 

2. Hamiltonian formulation of FMHD 

The hamiltonian structure of FMHD consists of the hamiltonian functional given by the energy H in (9) 
and Poisson bracket defined by 

VW=- j 3 {“( d x 6p_ (Pja,+ajPj) g+pa, 6H+(Bjai-a,Bk&) z+qa, g 
D 

, */, 
B 

. (14) 

In the Poisson bracket ( 14) the operator a,:= a( )/axJ acts to the right on each factor it multiplies. We sum 
on repeated indices, i, j, k= 1, 2, 3 and CY, 8, a= 1, 2, 3. The quantity ecus u is the totally antisymmetric tensor 
in three dimensions and represents the structure constants of the Lie algebra SO( 3). 

By using the hamiltonian H in (9) and the Poisson bracket { , } defined in ( 14)) the FMHD equations 
(2)-(4) re-emerge in the form of a hamiltonian system, i.e., as 

V’={H, F> , F,O’,P,B,W. (15) 

The variational derivatives of H are given by the formula 

6H= Id3 x v’6PJ+ (e+p/p-v2/2)6p+ & HiGBi-H’&14~ 
D 

( (16) 

Note the dual role played in three dimensions by the magnetic field intensity H in ( 16). We will come back 
to discuss this when we treat the n-dimensional case, below. For now, substituting the variational derivatives 
from (16) into the Poisson bracket ( 14) produces the following dynamical equations, 

0=1&p)=-(@),j, (17a) 

a,B’={H,B’}=-(ajB’-GjBk&)Vi=[curl(vxB)]’-v’divB, (17b) 
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(17c) 

(17d) 

( 17a) ( 17b) the FMHD equations (3a) and (2b) for mass conservation and magnetic in- 
duction, provided div B= 0. Using eqs. ( 17a) and ( 17b) then converts eqs. ( 17~) and ( 17d) into the desired 

FMHD forms (3b) and (4), respectively. This almost completes the hamiltonian formulation of the FMHD 
equations. It remains to show that the bilinear, skew-symmetric Poisson bracket ( 14) satisfies the Jacobi identity, 

{F, {G, H)j + {G, {K FJ} + {K {F, G>} =0 VF, G, H. (18) 

We verify the Jacobi identity by observing that ( 14) is the natural Poisson bracket on the dual space of the 
semidirect-product Lie algebra 

L, =D s(A”OA20 (A’@g) ) , (19) 

composed of vector fields D on [R” (n= 3 in the present case) acting on scalar functions ,4’, two-forms ,4*, and 
functions n”@g taking values in the Lie algebra denoted g-so (3 ) (with commutator given by g times the usual 
so ( 3 ) commutator). The symbols s, 0, and 0 in ( 19 ) denote semidirect product, direct sum, and direct prod- 
uct, respectively. In the semidirect product ( 19 ) D acts on itself by commutation of vector fields and acts on 
differential forms /ik, k=O, 2, by Lie derivation. Dual coordinates are: P dual to vector fields in D; p, to func- 
tions in no; B, to two-forms ,4’; and M to SO( 3)-valued functions in rlO@g. Since the Poisson bracket is linear 

in these coordinates, it satisfies the Jacobi identity by virtue of the corresponding identity on the Lie algebra. 

For further discussion and examples of Poisson brackets of semidirect-product type appearing in the physics 
of ideal fluids, see refs. [ 6-81 and various papers in ref. [ 91 and refs. [ 10,111. When M is absent both in the 
hamiltonian ( 9 ) and in the Poisson bracket ( 14)) we return to ordinary magnetohydrodynamics (MHD) for 
which the hamiltonian structure was first given in ref. [ 121 and shown to be dual to a semidirect-product Lie 

algebra in ref. [ 6 1. 
Conservation of energy H in (9) now follows from the hamiltonian formulation; by skew-symmetry of the 

Poisson bracket {H, H} = 0. Also, conservation of C, in ( 8 ) follows from the degeneracy of the Poisson bracket 

(14), namely 

{G,F}=O vF+P,p,B,~. 

In particular, C, Poisson-commutes with the hamiltonian H and so is conserved. 

(20) 

Functionals satisfying (20) are said to be Casimirs for the Poisson bracket. In terms of the lagrangian de- 
scription of FMHD, the Casimirs C* in (20) generate canonical transformations that relabel lagrangian fluid 
elements, without changing the local values of the eulerian dynamical variables {P, p, B, M). Hence, eq. (20) 

follows in the eulerian representation of FMHD for any functional F of the eulerian variables. 
One immediate observation about such Casimirs is that they can be used to construct Lyapunov functionals 

for investigating stability of equilibrium solutions. For a description of this method and many examples of 

Lyapunov stability conditions determined by using Casimirs in ideal fluid and plasma dynamics see ref. [ lo]. 
For now, we simply comment that a wide class of FMHD static equilibrium solutions correspond to the critical 
points of the sum H,= H+ Co. In particular, the equilibrium relation is satisfied at such critical points, namely 

a,F={H,, F}=O when 6H,=O. (21) 

Moreover, the linearized dynamics around such equilibrium solutions that are critical points of Hc preserves 
the second variation S2Hc; since @*Hc is the hamiltonian for the linearized dynamics around such critical 
points. Consequently, those equilibria for which the second variation S2Hc is of definite sign will be Lyapunov 
stable (in the norm defined by the quadratic form S2Hc) under the linearized dynamics. See ref. [ lo] for more 
details about hamiltonian methods for establishing Lyapunov stability conditions. 
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3. n-dimensional generalization of FMHD 

Poisson ( 14) for FMHD in three dimensions can be written in terms of a hamiltonian matrix 
operator b, as 

{H,F)=- jd3x($b,$, (22) 

where z is the column vector (P, p, B, M)’ and superscript t denotes transpose. Explicitly b, for three-di- 
mensional FMHD is given by the skew-symmetric matrix operator, 

1 ajP, +qa, pa, BJai - akBk&I Msai 1 

b’ aJP 0 0 0 = 
ajB’-&Bk,jk 0 0 0 

aiMa 0 0 sap “Mr., 

(23) 

The Casimirs C, in (20) satisfy bl*6C,/6z=0, i.e. the variational derivatives of C, are null eigenvectors of 
the hamiltonian matrix b,. 

Now, ordinary MHD without ferromagnetism is a hamiltonian system in an arbitrary number of spatial di- 
mensions n [ 6 1. The hamiltonian matrix for MHD in three dimensions in terms of magnetic induction B is 
simply (23) without the last row and column for the magnetization density. The corresponding hamiltonian 
matrix for MHD in 12 dimensions generalizes to 

aJPi +p,a, Pai - Bjk,i + ajBik + akBji 
b, = - aJP 

0 0 

&,,/+&,a, +&Z/a, 0 0 

with the corresponding Poisson bracket given by 

(24) 

{HyF)=- j n [“( d x 6~ (ajP,+~a,)~+pai~+(-Bjk,i+ajBik+akBj~)~ J 
‘k 

+ 
6F 6F 
spajP+ 6~,, 

6H 
B,,,j+Bj,a,+B,,a,) 6pj . 

> 1 (25) 

In eqs. (24) and (25 ) the quantity BIJ is a skew-symmetric two-form in R” which can be identified with a vector 
B only for n = 3. The hamiltonian matrix (24) is naturally associated with the dual of the Lie algebra 

L2 =D s(Ao@A”-*) , (26) 

with dual coordinates: P dual to vector fields in D, p, to functions in A’; and Bij, to (n-2)-forms A”-*. 
The hamiltonian matrix for MHD in n dimensions may also be expressed in terms of the vector potential 

Ai, i= 1, 2, . . . . n, with Bg=Aij-Aj,i. Namely, 

a,P;+Pjai pai -A,i+ajAi 
b 3=- ajP 0 0 . (27) 

A,j +Ajai 0 0 

with corresponding Poisson bracket given by 
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(i),P,+P,&)g +pd, 5 + (-A,,,+a,A,)g , 
I 

C-28) 

which is associated with the Lie algebra 

L,=Ds(AOOA”-‘). (29) 

The map B,,=A,,,-A,,, relates the two hamiltonian matrices (24) and (27). This map, written in the language 
of differential forms as B=dA, is the natural hamiltonian map generated by the homeomorphism of Lie algebras 

ids(idO(-d)): L*-+L, . (30) 

We seek an n-dimensional version of the FMHD equations ( l)-(4). It is natural to suppose that the derived 

equations are also hamiltonian, and it is easy to see that the corresponding hamiltonian structure, which gen- 
eralizes both the three-dimensional FMHD form (23) and the forms (24) and (27) for n-dimensional MHD 
is given by the following formulae: in the B,,-representation 

b;= -----! b 

and in the A-representation 

b;= 

(31) 

9 (32) 

where tap (7 are now the structure constants of a Lie algebra g (g = so ( 3 ) for the three-dimensional case of FHMD 
(24) ) in a basis {e,}. The matrices (3 1) and (32) are naturally associated with the duals of the Lie algebras 

L; =D s(AOOAn-‘O(lfO~g)) ) 

L[, =D s(AOOA”-‘0 (A”@g)) ) 

respectively. Thus, M= (M,) s/i”@g* is now a g*-valued density on [R”. 

(33) 

(34) 

The n-dimensional interpretation of the FMHD hamiltonian H in (9) is slightly less obvious. Clearly, the 
expression B- 47rM, as it stands, does not make sense in n dimensions; but what is needed is only I B- 4xMJ ’ 
the length squared in H. Thus, we need n-dimensional interpretations of the expressions I B I', IMI ', and M-B. 
Firstly, there is no problem with the term ) BI 2: it is simply fB”B,,. (Remember, we fixed coordinates on iR”; 
otherwise we would have to write down a metric on [R”, extend it to A2 ([R”), and write B2 = (B, B)d(vol), where 
d( vol) is the volume element formed from the metric.) Secondly, the expression I MI ’ only makes sense pro- 
vided we have a metric on g*, which we assume to be nondegenerate and g-invariant; this is equivalent to hav- 
ing an invariant nondegenerate metric ( , ) on g itself. The requirement of invariance of the metric assures 
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us that the expression I MI ’ = (M, M) =M”M, is G-invariant with respect to the Lie group G whose Lie algebra 
is Q. [Here again, we use fixed coordinates on U?” to decompose A4 as d”x@@, where fi=Moiea, so that 
I MI * =d”x(G, A?).] Thirdly, to make sense out of the expression M-B, we assume that we are given: ( 1) a 
representation r: g+End( V), V=lR”, thus making V and V A V into g-modules, and (2) a homomorphism of 
g-modules L: g*+V A V. Then extending L naturally into the homomorphism of A0 modules 
N@g*+/i”@ (V A V) via the formula 

L(ev)=eL(v) ) &‘4”, vcg*, (35) 

we define 

M.B:= (L(M),B) , McA”@g*, BEA*(R”)=F?“*AR”*. (36) 

In coordinates, if L( v,e”) =x%,8, A dj (where ai= a/ax’ and we identify [R” with its tangent space T,( Rn) at 
any point ue[R”), and M=d”.t@‘M,ea, B=B&‘A dx’, then (36) becomes 

M-B= d”XX”“M,B, 9 (37) 

where x cvu is a constant. Summarizing, the hamiltonian H for n-dimensional FMHD becomes 

$IPl*+Pe(p) 
> 

+&jd”xB*+2xj (A&M)- j (L(M),B). (38a,b) 

(In the A-representation, simply substitute B= dA in (38b). ) For the original case of FMHD in three dimen- 
sions, we have n=3, ~=so(3)=so(3)*x[R~~=:[R~*%lR~~~~, L=id,x”“=-tPJ, the totally antisymmetric ten- 
sor, the metric on g x R3 coincides with the euclidean metric on R3, and we recover from (38 ) the hamiltonian 

(9). 
Remarks. The reader may have wondered why we have not just let L be a linear map, in which case formula 

(36 ) would still make sense, but would require in addition that L be a homomorphism of g-modules. The 
reason is as follows: this requirement is equivalent to the G-invariance of the expression M-B. Indeed, if M= Bv, 

then for any hEg we have 

(h.M).B=(L(h.Bv),B)=B(L(h.v),B)=B(h.L(v),B)=-B(L(v),h.B)=-M.(h.B) , 

where h. ( ) stands for r(h) ( ). In particular, if G acts isometrically on RR (so that g is forced to be so(n) ), 
then the whole hamiltonian H in (38) is G-invariant. 

Since g has an invariant metric, the g-homomorphism L: g* +W:= V A V uniquely defines (and is uniquely 
defined by) the g-homomorphism Ld: g+W. 

We can now understand the nature of the magnetic field intensity H in general which collapses into H= B- 

47tA4 for the case n = 3, g = so (3 ): in our notation, 

H=B-n(*L(M)), (4) 

where 

*:n”@JA”(V*)+Ak(V) ) V=R”, (41) 

is the density map generated by the metric on IR”. 
In ordinary MHD the specific entropy variable q is alos present. To include it, one simply changes e(p) in 

(38a) into e(p, q), and adds to the hamiltonian matrices b; and b; the extra column and row 
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(42) 

This is a particular (cocycleless) case of the basic situation that in quasi-hamiltonian mechanics defines the 
Lie-algebraic relative Poisson bracket C to ( W* ) x C” (g* ) -+ C” ( W* ) via the formula [ 13 ] 

{F,fj @I= - (df;Lqw ).(U,,) 1 FEC”w*) 2 .w-b3*) 9 PEW*. (43) 

Finally, we remark that the extension of the present case from compressible fluids with internal variables 
interacting with abelian magnetic fields, to the situation of nonabelian Yang-Mills quark-gluon plasma in- 
teractions in the magnetohydrodynamic limit is treated in ref. [ 141. 
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